Glutathione Depletion and Carbon Ion Radiation Potentiate Clustered DNA Lesions, Cell Death and Prevent Chromosomal Changes in Cancer Cells Progeny
نویسندگان
چکیده
Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape.This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and L-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the care of patients, by minimizing genomic instability and improving the local control.
منابع مشابه
Studies on Genotoxic Effects of Mobile Phone Radiation on A375 Cells
Introduction: Radiation from cell phones has been associated with an increased risk of cancer. The literature has reported evidence of certain biological effects resulting from exposure to various wavelengths, doses, and intensities of radiofrequency radiation. The present study aimed to evaluate the possible adverse effects of radiation from a GSM mobile phone operating at 900 MHz on human mel...
متن کاملInduction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays
Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...
متن کاملThe Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملTelomere-Mitochondrion Links Contribute to Radiation-Induced Senescence in MCF-7 Cells
Heavy-ion radiotherapy has demonstrated the advantages over conventional radiotherapy , taking advantage of its improved dose conformation and higher relative biological effectiveness (Jakel et al., 2008). Telomerase is active in about 90% cancer cells which is important for cancer cells to maintain their immortalization. But the effects of heavy-ion radiation on telomere are largely unknown. U...
متن کاملRecent advances in the biology of heavy-ion cancer therapy.
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure. These ions, as a consequence, inactiva...
متن کامل